CHROM. 11,990

Note

Electronic signal differentiation as an aid for the comparison of size-exclusion chromatograms

B. B. WHEALS and J. R. RUSSELL

Metropolitan Police Forensic Science Laboratory, 109 Lambeth Road, London SEI (Great Britain) (Received May 1st, 1979)

The use of size-exclusion chromatography on microparticulate silica for the rapid comparison of a wide variety of samples of forensic interest has recently been reported¹. This form of chromatography, which produces a molecular size profile, often generates chromatograms which consist of a single broad peak with various shoulders and inflections and the comparison of such data can be difficult. To afford a greater level of confidence when judging the significance of such profiles it is the usual practice here to sequentially monitor the eluate with two detectors mounted in series, but a supplementary method is to enhance the visual difference between poorly structured chromatograms generated with a single detector by electronically differentiating the signal. Although derivative spectrophotometry is not new, recent developments in electronics now make it a simple technique to apply², and its use for enhancing the discriminatory capability of size exclusion chromatography is an obvious area of application.

EXPERIMENTAL

The column used in these experiments was a stainless-steel tube, $25 \text{ cm} \times 3/8$ in. O.D. $\times 0.8 \text{ cm}$ I.D., terminated with Zero Dead Volume (ZDV) reducing unions (3/8-1/16 in.) and packed with an irregular microparticulate silica of *ca*. $5 \mu \text{m}$ diameter, average pore size 13 nm, and surface area $320 \text{ m}^2/\text{g}$. The solvent used was tetrahydrofuran containing 1% water and it was pumped at 4 ml/min. The eluate was monitored with a UV detector (Cecil 212, Cecil Instruments, Cambridge, Great Britain) operated at 254 nm. Samples were dissolved in tetrahydrofuran and injected using a stop-flow technique. The detector signal was split to provide the fundamental chromatogram and its 1st derivative form simultaneously, and both were recorded on flat-bed pen recorders.

The electronic differentiation was carried out using the circuit shown in Fig. 1 which was designed after consideration of various reference sources³⁻⁵. IC 1 is a non-inverting, unity gain buffer amplifier used to match the output impedance of the detector to the input impedance of IC 2. IC 2 is the differentiator circuit which gives an output voltage proportional to the rate of change of input voltage *i.e.*

$$E_0 = -C_1 R_1 \frac{\mathrm{d}E_{\mathrm{in}}}{\mathrm{d}t}$$

Fig. 1. The circuit used for the first-order differentiation $o\hat{i}$ the detector sinal produced with size-exclusion chromatograms.

As this circuit also inverts the signal a unity gain inverter IC 3 is utilised to correct the signal; the output after IC 3 then becoming $-E_0$. A d.c. level is present at the output of IC 3 due to the leakage of components in and around IC 2 and this standing current is backed off using the subtractor circuit of IC 4 to present a signal suitable for a pen recorder input.

RESULTS AND DISCUSSION

Typical chromatograms produced using the described technique are shown in Fig. 2. It can be readily seen that the first-derivative form of the chromatograms is sufficiently structured to make the visual comparison of two or more profiles a simple task; the derivatised form of the chromatogram is also highly reproducible. The speed and versatility of size exclusion chromatography already makes this a powerful method for evaluating high polymers and complex mixtures of lower molecular weight and the use of electronic differentiation can only add to its versatility.

Fig. 2. Size-exclusion chromatograms of engine oils: comparison of the fundamental and firstlerivative form of the UV detector response. Column: 25×0.8 cm I.D.; packing: 5- μ m silica of 3 nm pore size; solvent: tetrahydrofuran-water (99:1); flow-rate: 4 ml/min; pressure: 1400 p.s.i.; letector: UV at 254 nm. The upper traces are the fundamental form of the chromatogram, the lower races the first-derivative form.

The circuit described costs only about £ 5 to construct and despite the use of low-quality components worked very satisfactorily. One of the main problems in constructing low-frequency differentiator circuits is that of the long time constants involved and ideally low-leakage, non-electrolytic capacitors should be used in conjunction with high input impedance operational amplifiers. Although the circuit shown does not use capacitors of this type it was adequate for first-order differentiation but is unlikely to perform well if higher orders of differentiation are required. Nevertheless there is every indication that differentiation to higher orders can be advantageous² and we propose to study this area of application in due course.

ACKNOWLEDGEMENTS

We would like to express our appreciation to Dr. R. Williams, the Director of this laboratory, for bringing ref. 2 to our attention, and thus initiating this study.

REFERENCES

- 1 B. B. Wheals, J. Liquid Chromatogr., 2 (1979) 91.
- 2 G. Talsky, L. Mayring and H. Kreuzer, Angew. Chem., 17 (1978) 785.
- 3 G. B. Clayton (Editor), Operational Amplifiers, Butterworths, London 1971.
- 4 R. Kalvoda (Editor), Operational Amplifiers in Chemical Instrumentation, Wiley, Chichester, New York, 1975.
- 5 W. G. Jung (Editor), I.C. Operational Amplifier Cookbook, H. W. Sams (Prentice-Hall), 1974.